Confronting Human Protease-Driven Diseases

Verra transforms the treatment of protease-driven diseases, from COPD to cancer, using an innovative small protein platform.

FOCUS: CANCER

image172

Cancer immunotherapies, often in combination with chemotherapy, have emerged as standards of care for multiple tumor types. Despite breakthrough successes, response rates are still frequently low and cancer recurrences are common. 

image173

Cell surface antigen proteins are common targets for intervention. But antigen availability is often dictated by regulatory proteases, and key protease up-regulation is correlated with poor patient outcomes. These facts have been insufficiently appreciated.

image174

Verra’s lead inhibitor, VTH140, is a small protein which will allow immunotherapies to benefit more patients by revitalizing antigen availability. 


Tumor proliferative factors are also brought under control with the administration of  VTH140 and it promises excellent synergy with chemotherapy (as shown). 


Across numerous indications and modalities, Verra intends to leverage and amplify the power of emerging anti-cancer therapies...   with real-world impact for poorly responding patients in need.

FOCUS: COPD

image175

COPD is a debilitating disease affecting about 384 million people world wide. Spending on drug therapies exceeds 10.6 billion. Health care costs in the US alone exceed $30 billion annually. Sadly, current treatments address primarily symptoms: there are still no disease modifying agents and COPD remains a huge unmet medical need.

image176

What’s new? A specific protease has been definitively linked with COPD’s 3 most important phenotypes (emphysema, small airway fibrosis and mucous hyper-secretion) and it is up-regulated in the lungs of human COPD patients in proportion to the severity of their disease.

image177

Verra Therapeutics has developed a highly selective and stable inhibitor for this target. Efficacy studies in mice show VTH212’s great potential to block damage in the lung (intra-nasal administration). VTH212 exhibits favorable drug-like pharmacokinetics and is compatible with inhaled routes of administration. NIH has expressed its intent to substantially support development. Among numerous disease altering responses, harmful elastin degradation is blocked in smoke-exposed mice treated with VTH212. 

Pipeline

At Verra, we have built a pipeline that leverages key proteases underlying major diseases.

image178

Unique Inhibitor Platform

Verra's Inhibitors are based on nature's elegant design for each target and are lightly modified for stability, solubility, potency and good pharmacokinetics. As native protein drugs, they promise reduced immunogenicity and will follow clear and numerous regulatory precedents.


Additional advantages include:

1)  Selectivity unachievable with small molecules...  the structural differences between proteases are subtle and selectivity is critical for success.

2)  Better than antibody-based technologies:

      -  smaller (≈ 20 KDa or less)

      -  not depleted on tissue entry by inactive targets

      -  appropriate level of affinity

        =>  better tissue and solid tumor penetration

      (Poor penetration = reduced efficacy + cancer recurrence.)

3)  Inhaled administration for respiratory indications

4)  Microbial production

5)  Rapid lead and process development time

6)  Comprehensive IP protection

image179

Leadership

Christopher Prince , PhD CoFounder / President

Decades of senior leadership managing technology and technology companies.

Biotech and pharmaceutical development experience at the founder, senior executive and board level. Phyton Inc./Phyton Biotech, CellFor Inc., Annikki GmbH and Verra Therapeutics.

Marcia Moss, PhD Chief Scientist

Former Oncology Project Lead at GlaxoSmithKline

Comprehensive research background in drug discovery and development.

Renown thought leader on  proteases as disease targets.

Extensive industrial experience.

Robert Rasmussen Operations

Technology and drug development professional with three decades of experience.

Operational experience across research, drug development and process development.

Dr. Caroline Owen MDPHD Advisor/Respiratory

Associate Professor of Medicine, Harvard Medical School 

Broad background in proteases and their roles in regulating lung inflammatory injury.

First to show up-regulation in human COPD lungs and protection in knock-out mice from cigarette smoke-exposure.

Dr. Miles Miller, PhD Advisor/Cancer/Imaging/Protease Diseases

Assistant Professor of Radiology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School 

In vivo context-dependent action of anticancer drugs, proteases, and cell-signaling pathways, with special emphasis on using computational modeling and microscopy methods to understand drug pharmacology

Dr. Celina Kleer, MD PhD Advisor/Breast Cancer

Harold A. Oberman Professor of Pathology, Department of Pathology, University of Michigan Medical School 

Co-Director Breast Pathology Program, University of Michigan 

Over 18 years of experience in breast pathology and cancer research

Contact

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Verra Therapeutics

Verra Therapeutics LLC 127 Asbury Rd Ithaca, NY 14882 US